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Robust fault detection based on compensation of the modelling error

G. KlanCÏ ary*, D- . JURICÏ ICÂ z and R. Karbay

The problem of compensation of modelling errors for the purpose of robust fault
detection based on parity relations is addressed. The idea is to approximate unmodelled
non-linear dynamics by a neural network model and then to remove the e� ects of
unmodelled dynamics from the primary residuals. The design of such a compensator
takes two steps. In the ®rst, a subset of the most informative regressors is selected. The
second step entails structure determination and parameter estimation by means of
numerical optimization of a criterion function. The criterion re¯ects a compromise
between the quality of approximation and the complexity of the model structure. The
results from the study on a three-tank test rig are presented and a comparison between
compensated and uncompensated residuals made. It is shown that the compensated
residuals represent a good basis for reliable, yet sensitive enough, fault detection and
isolation.

1. Introduction

Faults in systems can be viewed as hidden inputs that
cannot be directly measured, at least in a vast majority

of cases. The best way to assess faults is to check the

consistency of data coming from sensing devices. This is

done by means of the mathematical model that serves to
transform the original process signals into a set of spe-

cial signals referred to as residuals. Residuals have the

unique property of being zero if there is no fault and
di� erent from zero as soon as a fault in the system

occurs. The problem with this concept is that in practice

there are other unanticipated hidden inputs that can
a� ect the residuals in a similar way as faults do. Their

origin extends from measurement noise, process disturb-

ances and modelling errors. Consequently, the residuals
may be non-zero even if there is no actual fault in the

system. This can easily lead to false alarms. Therefore,

the key problem in the design of fault detection and

isolation (FDI) systems is robustness, i.e. to achieve as
high as possible sensitivity to faults and as low as poss-

ible sensitivity to other hidden inputs. In further

research attention will be focussed on disturbances
caused by modelling errors.

The issue of robustness has received wide attention
over the last two decades (Patton 1994). Robustness
can be assured using the following two approaches.

The ®rst relies on cautious decision-making about
zero/non-zero residual patterns. It is also termed a pas-
sive approach and involves various techniques like

adaptive thresholds (Ho¯ing and Pfeufer 1994),
weighted residuals (ZÏ ele and JuricÏ icÂ 1999) and fuzzy
decision rules (Schneider 1993).

The second approach to robustness, termed an active
approach, focuses on proper residual design. This
approach depends on detailed knowledge about distri-
bution matrices, i.e. the way the disturbances a� ect resi-
duals. If the distribution matrix were known exactly,
various decoupling techniques like failure detection ®l-
ters, unknown input observers and eigenstructure
assignment (Patton and Kangethe 1989) would elimin-
ate the e� ects of uncertainties. Unfortunately, in prac-
tice, the distribution matrix is often not precisely known.
In such a case, an approximate structure of the uncer-
tainty should be found. A remedy suggested by Patton
and Chen (1993) relies on approximating the distri-
bution matrix by a constant such that the changing
operating conditions are approximately described in a
equally fair manner. However, in the case of modelling
errors, the distribution matrix can consist of many, gen-
erally time-varying, terms that can make decoupling
quite di� cult. For the special case of linear models
with unmodelled higher frequency dynamics, Patton
and Chen (1992) suggested a linear compensator to
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remove the bias term from the residuals. A similar phi-

losophy has been followed by Zhou and Bennett (1998)

for the problem of compensating for the e� ects of
unmodelled non-linearities. They applied a neural net-

work approximator integrated within a conventional

linear observer set-up. The key problem they pointed
out concerns avoiding incorrect compensation signals

during the fault period. Their solution relies on

employing di� erent structures in the learning and fault
detection stage, which is an important contribution.

However, the problem with (closed-loop) observer-

based approaches is still the question of trade-o�
between the sensitivity of the residuals to faults and

the dynamics of state reconstruction. Namely, if the

eigenvalues of a system’s matrix are designed to speed
up the reconstruction, then small incipient faults might

be left undetected. Therefore, for stable systems, the
open-loop parity-space approach can be more appro-

priate.

A robust open-loop residual generation scheme based

on parity relations is addressed here and a solution
derived for the problem of compensating modelling

errors. Unlike the observer-based (closed-loop) residual

generation schemes, it is shown that a unique compen-
sator structure is used in the learning and detection

stage. Similarly to Zhou and Bennett (1998), a neural
network is used to realize the compensator of un-

modelled non-linear e� ects. The paper is organized as

follows. In section 2 the problem formulation is pro-
vided. Section 3 discusses the design of a robust residual

compensator by means of neural networks. The experi-

mental results obtained on a three-tank system are
reviewed in the fourth section. The paper ends with

concluding remarks.

2. Problem formulation

Consider a non-linear dynamic system described by the

following general form:

y…k† ˆ g…y…k ¡ 1†; . . . ; y…k ¡ dy†; u…k†; . . . ; u…k ¡ du†;

f …k†; . . . ; f …k ¡ df ††; …1†

where k is current sampling time, y…k† 2 <ny , u…k† 2 <nu

and f …k† 2 <nf are vectors of process outputs, inputs

and faults entry respectively, and ny, nu, and nf are the

dimensions of mentioned vectors with dy, du and df

being the dynamic orders. Furthermore, function g…¢†
is assumed to be continuously di� erentiable over the
arguments.

Also assume that the e� ects of faults can be repre-

sented by means of additive terms:

y…k† ˆ g…y…k ¡ 1†; . . . ; y…k ¡ dy†; u…k†; . . . ; u…k ¡ du††

‡
Xdf

iˆ1

Ri…k† f …k ¡ i†; …2†

with

y…k† ˆ ‰y1…k† ¢ ¢ ¢ yl…k† ¢ ¢ ¢ yny
…k†ŠT;

u…k† ˆ ‰u1…k† ¢ ¢ ¢ ul…k† ¢ ¢ ¢ unu
…k†ŠT;

where Ri is the fault distribution matrix and f …k† is a
vector of faults, which is an unknown function of time.
During normal process behaviour f …k† ˆ 0. Matrices Ri

are assumed to contain a ®xed con®guration of zero
terms.

The general Nonlinear AutoRegressive model with
eXogenous inputs (NARX) process model (2) can be
represented in various forms. In our case the most con-
venient is the following polynomial form (Henson and
Seborg 1997):

yl…k† ˆ
Xny¢dy

iˆ1

³1
…l†iYk…i† ‡

Xnu ¢du

iˆ1

³2
…l†iUk…i†

‡
Xny¢dy

iˆ1

Xi

jˆ1

³3
…l†ijYk…i†Yk… j†

‡
Xny¢dy

iˆ1

Xnu ¢du

jˆ1

³4
…l†ijYk…i†Uk… j†

‡
Xnu¢du

iˆ1

Xi

jˆ1

³5
…l†ijUk…i†Uk… j†

‡ ¢ ¢ ¢ ‡
Xdf

iˆ1

Ril…k†f…k ¡ i†; …3†

where notation Yk…i† means ith element of vector Yk

and

Yk ˆ b y1…k ¡ 1† ¢ ¢ ¢ y1…k ¡ dy† ¢ ¢ ¢ yl…k ¡ 1†

¢ ¢ ¢ yl…k ¡ dy† ¢ ¢ ¢ yny
…k ¡ 1† ¢ ¢ ¢ yny

…k ¡ dy†c

Uk ˆ ‰u1…k ¡ 1† ¢ ¢ ¢ y1…k ¡ du† ¢ ¢ ¢ ul…k ¡ 1†

¢ ¢ ¢ ul…k ¡ du† ¢ ¢ ¢ unu
…k ¡ 1† ¢ ¢ ¢ unu

…k ¡ du†Š:

Here ³m
…l†ij 2 < is the parameter accompanying the mth

term in expansion, Uk and Yk are the vectors of process
inputs and outputs and also their delayed values.

The nominal model of the plant is usually not as
detailed as is suggested in (3) but rather it tends to be
as simple as possible. Moreover, in many realistic appli-
cations, simple models are good enough to meet user
requirements. As the resulting model is only an approxi-
mate description of the process, the unmodelled e� ects,
such as higher dynamic terms and non-linearities,
remain so that their in¯uence should be suppressed.
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Without loss of generality, it will be assumed in the
further research that the nominal behaviour of the pro-
cess can be described by means of a stable multivariate
ARX model:

y…k† ˆ A1y…k ¡ 1† ‡ ¢ ¢ ¢ ‡ Ady
y…k ¡ dy† ‡ B0u…k†

‡ ¢ ¢ ¢ ‡ Bdu
u…k ¡ du†: …4†

Model (4) is widely applied in practice. It can be
obtained either by linearization around an operating
point or directly by identi®cation from past data
records.

On the basis of model (4), it is easy to design the set of
primary residuals r…k† (Gertler 1998) as follows:

r…k† ˆ y…k† ¡ ŷy…k† ˆ y…k† ¡ A1ŷy…k ¡ 1†

¡ ¢ ¢ ¢ ¡ Ady
ŷy…k ¡ dy† ¡ B0u…k†

¡ ¢ ¢ ¢ ¡ Bdu
u…k ¡ du†; …5†

where r…k† ˆ br1…k† ¢ ¢ ¢ rl…k† ¢ ¢ ¢ rny
…k†cT.

Expression (5) represents the so-called computational
form of residuals and ŷy…k† represents outputs of the
model. Supposing that the linear model is the same or
at least similar to the ®rst part of equation (3) (ideal
case) then residuals in normal process behaviour
appear only due to higher terms in expression (3). The
internal form resulting from (3) and (5) reads:

rl…k† ˆ
Xny¢dy

iˆ1

~³³ 1
…l†iYk…i† ‡

Xnu ¢du

iˆ1

~³³ 2
…l†iUk…i†

‡
Xny ¢dy

iˆ1

Xi

jˆ1

³3
…l†ijYk…i†Yk… j†

‡
Xny ¢dy

iˆ1

Xnu ¢du

jˆ1

³4
…l†ijYk…i†Uk… j†

‡
Xnu ¢du

iˆ1

Xi

jˆ1

³5
…l†ijUk…i†Uk… j†

‡ ¢ ¢ ¢ ‡
Xdf

iˆ1

Ril…k†f…k ¡ i†: …6†

The polynomial description (6) can be represented in
compact form:

r…k† ˆ ®…y…k ¡ 1†; . . . ; y…k ¡ dy†; u…k†; . . . ; u…k ¡ du††

‡
Xdf

iˆ1

Ril…k† f …k ¡ i†: …7†

Obviously, due to unmodelled dynamics, residuals are
never equal to zero, even during fault-free operation.
Now focus on fault-free operation, i.e. f …i† ² 0.

The process outputs can be written as:

y…k† ˆ ŷy…k† ‡ r…k†: …8†

If expression (8) is substituted in (7) for
y…k ¡ 1† ¢ ¢ ¢ y…k ¡ dy† the following relationships are
obtained

r…k† ˆ ’…r…k ¡ 1†; . . . ; r…k ¡ dy†; ŷy…k ¡ 1†; . . . ; ŷy…k ¡ dy†;

u…k†; . . . ; u…k ¡ du††: …9†

To minimize the e� ects of modelling errors on resi-
duals, the relationships in expression (9) can be approxi-
mated by an additional non-linear model. Such a model
should rely on expression (9) rather than (7) because in
the faulty mode the process output is contaminated by
fault entry. Fault modelling is, however, not considered
in the design stage. The problem is thus only partly
solved because residuals r…k-i† are still in¯uenced by
faults. The complete remedy is achieved by using the
revised relationship (9), i.e.

r̂r…k† ˆ ’…r̂r…k ¡ 1†; . . . ; r̂r…k ¡ dy†; ŷy…k ¡ 1†; . . . ; ŷy…k ¡ dy†;

u…k†; . . . ; u…k ¡ du††: …10†

The di� erence between (9) and (10) is only in the type
of prediction. In the ®rst case, we have one-step ahead
prediction while in the second case, the prediction is
k-step ahead. Generally, the second case results in
higher prediction error variance than the ®rst case, but
that is the price to be paid for getting rid of the in¯uence
of faults. The con®guration of the residual compensator
is shown in ®gure 1.

3. Design of the robust residual compensator

The structure of residual compensator (10) can be
designed by using di� erent approaches such as neural
networks, NARX polynomial models, fuzzy models and
local linear model trees (Nelles 1996). Generally, the
choice of approximator depends on the extent of avail-
able a priori knowledge. Owing to the fact that in our
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case no a priori assumption about model structure could
be made, Arti®cial Neural Networks (ANN) were
employed. In particular, the perceptron with one
hidden layer is used.

The problem of approximation can be stated as the
problem of de®ning the perceptron Nonlinear Output
Error (NOE) structure ’̂’ANN which approximates the
expression (10) such that:

r…k† º r̂r…k† ˆ ’̂’ANN…‰r̂r…k ¡ 1†; . . . ; r̂r…k ¡ dy†;

ŷy…k ¡ 1†; . . . ; ŷy…k ¡ dy†; u…k†; . . . ; u…k ¡ du†Š; ĥh†;
…11†

where ĥh is the vector of parameters of the network
(weights and biases) and [ ¢ ] is the vector containing
the regressors.

The design of ANN (11) consists of two main steps. In
the ®rst, the set of inputs into the network must be
de®ned. In the second, it is ®rst necessary to de®ne the
number of hidden neurons in the perceptron structure.
Then, from training data, the unknown parameters of
the model have to be estimated by the aid of optimiza-
tion techniques.

3.1. First step: optimal choice of regressors

The optimal choice of regressors is one of the key
problems in neural network design. Operating with the
set of all possible regressors is inconvenient. Therefore,
it is better to choose a subset of most signi®cant ones
that carry the bulk of information required to describe
the process output. Thus, the well-known problem of
over®tting and accompanying numerical inconveniences
originating from ill-conditioned optimization problems
can be avoided. Three types of approaches are roughly
distinguished.

The ®rst type is based on ad hoc selection of regres-
sors. This procedure is typically repeated until the
underlying network yields satisfactory quality of ®t to
the process output.

The second type relies on the use of the techniques of
non-linear statistical analysis such as non-linear prin-
cipal component analysis (Dong and McAvoy 1996).
Since they are mainly realized by neural networks,
they are time-consuming and the contribution of each
input variable to principal components is di� cult to
evaluate (Atsushi and Stephen 1997).

The third type, however, uses linear techniques. The
resulting selection of regressors is suboptimal but the
required computational load is signi®cantly lower than
in the previous two approaches. Here, it is simply
assumed that an input that has a signi®cant non-linear
e� ect on output in fact has a signi®cant linear e� ect on
output. A systematic procedure for eliminating unneces-
sary data by examining the dynamic characteristics of

cause and e� ect relationship was recently suggested by
Atsushi and Stephen (1997). Their idea is followed in the
approach below.

The procedure is based on linear principal component
analysis. First, take the training set consisting of the
matrix of recorded inputs U ˆ ‰u1; u2; . . . ; unuŠ and
matrix of recorded outputs Y ˆ ‰ y1; y2; . . . ; ynyŠ, where
ui ˆ ‰ui…k†; . . . ; ui…k ‡ N†ŠT, yj ˆ ‰ yj…k†; . . . ; yj…k ‡ N†ŠT
and N is the number of samples de®ned by the history
of records.

In the ®rst step matrix F is composed from matrices
Y and U as F ˆ YTU . Then singular value decomposi-
tion is applied to F, resulting in F ˆ WSVT, where W
and V are unitary matrices and S is a diagonal matrix
containing singular values. According to Turner et al.
(1996), the input with index ¶ is considered the most
signi®cant, with ¶ being the biggest element of the ®rst
column of matrix V ˆ ‰vij Š which means
maxfv11; v21; . . . ; vnu1g ˆ v¶1.

To determine the second most signi®cant input, the
input u¶ selected in the ®rst step is removed from U . The
contribution of the selected input u¶ to the outputs Y is
removed by linear regression Y Y ¡ u¶ ¢ PT, where P
is the vector of estimated linear parameters. To ®nd the
next important candidates the procedure is repeated in
the same manner.

3.2. Second step: ANN training

When regressors are sorted out by signi®cance, the
main part of a usually heuristically treated problem is
solved. For selection of those regressors that essentially
contribute to the quality of ®t, the simple and most
e� ective procedure of experimenting should be
employed. This is achieved by gradually extending the
set of ANN inputs by regressors according to the sig-
ni®cance deduced above. The addition of regressors is
terminated when the trained ANN does not allow visible
improvement.

If the resulting static ANN fails to yield the expected
quality of ®t, the dynamic recurrent ANN structure (11)
is to be used. Here external time delay units are used to
learn the system dynamics. The number of lags, i.e.
order of the model, can either be determined by a trial
and error approach or by using a priori system knowl-
edge.

The number of hidden sigmoid neurons should be
determined gradually. First, a network with one
hidden neuron is trained and validated. Then, in each
step, the number of hidden neurons is increased until the
performance on the validation data set achieves the
optimum.

The ANN structure could also be determined by itera-
tive procedures for ANN structure optimisation. These
procedures try to automate the usually manual search of
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the optimal ANN structure by the use of pruning and
constructive algorithms (Kwon and Yeung 1997).

The parameters of the ANN NOE structure are deter-
mined as the minimum of the criterion function de®ned
on a training set:

ĥh ˆ arg min
³

XN

kˆ1

…r…k† ¡ r̂r…k††2: …12†

For that purpose the Levenberg±Marquardt training
algorithm (Norgaard 1997) was used. Optimization of
parameters is performed in two steps. In the ®rst, the
structure in ®gure 2a is applied where real past residuals
r enter the NARX model. This step is important in
®nding the initial parameter guesses. In the second, the
training procedure proceeds on model (11), which uses

past estimated residuals r̂r (NOE model). The main rea-
sons for this are (Norgaard et al. 2000):

. models with feedback (non-linear OE models, recur-
rent networks) tend to have more local minima than
the NARX models; hence, without good initialization,
it is likely that one will get stuck in a poor minimum;
and

. the initial parameters obtained by optimizing an open
loop model (one step ahead prediction; ®gure 2a)
guarantee a convergence of the optimisation run in
®gure 2b.

Learning starts from randomly chosen small weights
that are adapted during the training. Therefore, the pro-
cedure should be repeated several times to obtain the
best results.

4. Application to a three-tank system

The procedure for robust residual design was applied to
a three-tank test rig. Its structure is depicted in ®gure 3.
It consists of three tanks, T1, T2 and T3, connected with
¯ow paths, which serve to supply water from main reser-
voir T0. There are two active ¯ow paths available. In the
®rst, the ¯ow is generated by varying the angular speed
of pump P1. In the second case, pump P2 works at
constant speed while the ¯ow is manipulated by the
valve V5. There are two servo-valves in the plant, i.e.
V4 and V5, driven by DC motors. Valves V1 and V2 are
on-o� while V3 is a manual valve. The purpose of the
latter is mainly to emulate `real’ faults, i.e. leakage of
tank T1. A detailed description of the process (JuricÏ icÂ et
al. 1997) along with complete simulator in Simulink is
available at http:// www - e2.ijs.si / Topics / Projects /
Copernicus / 3tank.html. The simulator is mentioned as
it is easier to experiment with, but it should be empha-
sized that the results presented here were obtained from
the rig itself.

In the present study, tanks T1 and T3 take over the
role of bu� ers for supplying T2. Contents from T1 and
T3 are `mixed’ in T2 and then fed back to the reservoir
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T0. The level in tank T1 is controlled by manipulating
the reference speed of pump P1 while the level in T3 is
controlled by manipulating the command signal of valve
V5. The valves V1 ,V2 and V4 are normally open, while
V3 is normally closed. By changing these normal settings
and by adding bias to level sensors, various faults can
easily be emulated.

The described process has two inputs u…t† ˆ ‰! sŠT
(speed ! of pump P1 and position s of servo valve V5)
and three outputs y…k† ˆ ‰h1h2h3ŠT in tanks T1, T2 and
T3 respectively. The linearized nominal model obtained
at a certain operating point is described by the following
®rst-order system:

ŷy…k ‡ 1† ˆ

0:9718 0:0107 0:0001

0:0107 0:9056 0:0153

0:0001 0:0153 0:9640

2

664

3

775 ¢ ŷy…k†

‡

0:4946 0

0:0027 0:0003

0 0:0397

2

664

3

775 ¢ u…k†: …13†

The system is driven in closed loop with two PI con-
trollers which take care of the levels h1 and h3. Thus the
e� ects of faults are seen only on process inputs.

The structure of the residual compensator is repre-
sented with three MISO recurrent neural networks
(®gure 4). Inputs to each of them are determined by
the selection procedure represented above. The initial
set of regressors consists of inputs to the system and
model outputs only. The regressors obtained, sorted
by signi®cance, are listed in table 1.

Here ĥhi denotes the ith output of the linear model
(13). The elements of the rows of table 1 appear as
candidate inputs into the ANN. The selection of the

important subset of regressors from table 1 is done step-

wise. For example, the ®rst ANN starts with ĥh1 as the
only input. In the next step, two inputs are applied, i.e.

ĥh1 and !. If the quality of ®t has improved, the third

input is added, i.e. ĥh1, ! and ĥh2 and so on until no

progress in the quality of ®t is achieved any more. The

®nal subset of regressors for each static ANN is given in

table 2.

After the regressors are determined, the next step is to
choose the proper order of a neural network structure

which can either be done by trial and error or by using a

priori knowledge of the system. The second-order recur-

rent ANN structure was used in our case. Further

increasing the order, i.e. the number of variables lags,

is not reasonable as the trade-o� between quality of ®t
and structure complexity becomes less acceptable. The

number of hidden neurons was determined according to

the success of the ANN training as mentioned above,

thus there were ®ve neurons for ANN1 and ANN2, and

four of them for ANN3.

The set of training data from normal system opera-

tion was obtained by changing the reference values of
each controlled tank pulsewise with di� erent durations

and di� erent magnitudes covering the whole operating

region. Thus, the process dynamics and non-linearity are

well described by the training data.

The progress of training can be seen in ®gure 5. As

can be seen, the networks are trained in less than 10

iterations where initialization phase of the training is
not included.

Once the networks were trained, a set of validation

data from normal system operation was used to check

the adequacy of the proposed approach. The set was

collected from a smaller region and di� erent from the

training set. Figure 6 shows the process inputs and out-
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Table 1. Regressors sorted by signi®cance.

Sequence of regressors sorted by signi®cance

Output 1 2 3 4 5

r1 ĥh1 ! ĥh2 ĥh3 s

r2 ĥh1 ĥh3 s ! ĥh2

r3 ĥh3 s ĥh2 ĥh1 !

Table 2. Chosen regressors used as inputs to static ANN.

Sequence of ®nal subset of regressors output

Output 1 2 3 4 5

r1 ! ĥh1 ĥh2 / /

r2 ! s ĥh1 ĥh3 /

r3 s ĥh3 / / /



puts while the resulted uncompensated and compen-

sated residuals are shown in ®gure 7.
Comparison of compensated and non-compensated

residuals shows that considerable improvement is

achieved as thresholds needed for uncompensated resi-

duals can be decreased by at least three times in order

that smaller faults can easily be detected.

In ®gure 8, the system is subjected to a small fault-

leakage of the ®rst tank where the period of fault is
marked by a shaded area. The fault a� ects only the

®rst two residuals (compare ®gures 7 and 8) while the

third remains una� ected. Compensated residuals are

close to zero and when the fault occurs, they have a

similar average magnitude to the non-compensated

ones. Thus, as the fault detection scheme is made

robust to modelling errors, the scheme can detect inci-
pient faults although modelling uncertainties are

present. From ®gure 8, it can be seen that compen-

sated residuals have a signi®cant decrease and small

thresholds can easily be applied to the residual signals

to judge about zero/non-zero patterns. Just from
observing the uncompensated primary residuals, it is

not clear whether the fault occurs in the system or
not.
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Figure 6. Inputs and outputs of the validation data.



5. Conclusions

An approach to assuring robustness in model-based
fault detection, in spite of the presence of unmodelled

higher dynamics and unmodelled nonlinearities, is pre-

sented. The idea relies on designing an additional com-

pensator structure, that is used to decouple the e� ects

caused by uncertainties from residuals. The suggested

procedure combines classical modelling with modelling

based on a learning approach resulting in a hybrid
model structure. The compensator approximates the

structure of modelling uncertainties by developing a

neural model, where particular consideration is given
to avoiding the generation of an incorrect compensation
signal during a fault period. The idea to choose the
minimal number of inputs into the neural network by
selecting only the most informative ones has proved
useful.

The proposed scheme has been applied to the labora-
tory test rig and the results show that incipient faults can
be detected and isolated correctly from compensated
residuals while this could not have been done by ana-
lysing the non-compensated ones. It is evident that at
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Figure 7. Uncompensated (solid) and compensated (dashed)

residuals during normal operation.
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Figure 8. Uncompensated (solid) and compensated (dashed)

residuals before and after (shaded area) the fault (leakage

from ®rst tank) occurs.



the same degree of robustness the sensitivity to faults of
the proposed fault detection scheme can be much
increased. However, further modelling e� ort to achieve
more e� cient or even perfect disturbance decoupling is
not reasonable due to the fact that the complicated
structure required for a hardly noticeable improvement
is rarely justi®able. As an ANN is a relatively com-
plicated model representation of the modelling error, it
is of considerable practical importance to search for a
simpler representation of expression (6) as, for example,
statistical correlation methods. This will be addressed in
further research.
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